Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement

نویسندگان

  • Nhat Nguyen
  • Peyman Milanfar
  • Gene H. Golub
چکیده

In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Frame Based Method for High-Resolution Image Reconstruction

High-resolution image reconstruction is to reconstruct a high-resolution (HR) image from multiple, undersampled, shifted, degraded and noisy frames obtained by using multiple images shifted from each other by sub-window shifts. Problems of high-resolution restoration for images arise in a variety of scientific, medical, and engineering applications. The problem of HR image reconstruction is bec...

متن کامل

Optimal space-varying regularization in iterative image restoration

It has been shown that space-variant regularization in image restoration provides better results than space-invariant regularization. However, the optimal choice of the regularization parameter is usually unknown a priori. In previous work, the generalized cross-validation (GCV) criterion was shown to provide accurate estimates of the optimal regularization parameter. The author introduces a mo...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Wasserstein Loss for Image Synthesis and Restoration

This paper presents a novel variational approach to impose statistical constraints to the output of both image generation (to perform typically texture synthesis) and image restoration (for instance to achieve denoising and super-resolution) methods. The empirical distributions of linear or non-linear descriptors are imposed to be close to some input distributions by minimizing a Wasserstein lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 10 9  شماره 

صفحات  -

تاریخ انتشار 2001